Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
J Clin Invest ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530358

RESUMO

Gender affirming hormone therapy (GAHT) is often prescribed to transgender (TG) adolescents to alleviate gender dysphoria, but the impact of GAHT on the growing skeleton is unclear. We found GAHT to improve trabecular bone structure via increased bone formation in young male mice and not to affect trabecular structure in female mice. GAHT modified gut microbiome composition in both male and female mice. However, fecal microbiota transfers (FMT) revealed that GAHT-shaped gut microbiome was a communicable regulator of bone structure and turnover in male, but not in female mice. Mediation analysis identified two species of Bacteroides as significant contributors to the skeletal effects of GAHT in male mice, with Bacteroides supplementation phenocopying the effects of GAHT on bone. Bacteroides have the capacity to expand Treg populations in the gut. Accordingly, GAHT expanded intestinal regulatory T cells (Tregs) and stimulated their homing to the bone marrow (BM) in male but not in female mice. Attesting to the functional relevance of Tregs, pharmacological blockade of Treg expansion prevented GAHT-induced bone anabolism. In summary, in male mice GAHT stimulated bone formation and improved trabecular structure by promoting Treg expansion via a microbiome-mediated effect. In female mice GAHT neither improved nor impaired trabecular structure.

2.
Elife ; 122023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37672386

RESUMO

While mitochondria in different tissues have distinct preferences for energy sources, they are flexible in utilizing competing substrates for metabolism according to physiological and nutritional circumstances. However, the regulatory mechanisms and significance of metabolic flexibility are not completely understood. Here, we report that the deletion of Ptpmt1, a mitochondria-based phosphatase, critically alters mitochondrial fuel selection - the utilization of pyruvate, a key mitochondrial substrate derived from glucose (the major simple carbohydrate), is inhibited, whereas the fatty acid utilization is enhanced. Ptpmt1 knockout does not impact the development of the skeletal muscle or heart. However, the metabolic inflexibility ultimately leads to muscular atrophy, heart failure, and sudden death. Mechanistic analyses reveal that the prolonged substrate shift from carbohydrates to lipids causes oxidative stress and mitochondrial destruction, which in turn results in marked accumulation of lipids and profound damage in the knockout muscle cells and cardiomyocytes. Interestingly, Ptpmt1 deletion from the liver or adipose tissue does not generate any local or systemic defects. These findings suggest that Ptpmt1 plays an important role in maintaining mitochondrial flexibility and that their balanced utilization of carbohydrates and lipids is essential for both the skeletal muscle and the heart despite the two tissues having different preferred energy sources.


Cells are powered by mitochondria, a group of organelles that produce chemical energy in the form of molecules called ATP. This energy is derived from the breakdown of carbohydrates, fats, and proteins. The number of mitochondria in a cell and the energy source they use to produce ATP varies depending on the type of cell. Mitochondria can also switch the molecules they use to produce energy when the cell is responding to stress or disease. The heart and the skeletal muscles ­ which allow movement ­ are two tissues that require large amounts of energy, but it remained unknown whether disrupting mitochondrial fuel selection affects how these tissues work. To answer these questions, Zheng, Li, Li et al. investigated the role of an enzyme found in mitochondria called Ptpmt1. Genetically deleting Ptpmt1 in the heart and skeletal muscle of mice showed that while the development of these organs was not affected, mitochondria in these cells switched from using carbohydrates to using fats as an energy source. Over time, this shift damaged both the mitochondria and the tissues, leading to muscle wasting, heart failure, and sudden death in the mice. This suggests that balanced use of carbohydrates and fats is essential for the muscles and heart. These findings imply that long-term use of medications that alter the fuel that mitochondria use may be detrimental to patients' health and could cause heart dysfunction. This may be important for future drug development, as well as informing decisions about medication taken in the clinic.


Assuntos
Insuficiência Cardíaca , Animais , Camundongos , Ácidos Graxos , Glucose , Insuficiência Cardíaca/genética , Camundongos Knockout , Mitocôndrias , Atrofia Muscular
3.
J Clin Invest ; 133(8)2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36881482

RESUMO

IL-17A (IL-17), a driver of the inflammatory phase of fracture repair, is produced locally by several cell lineages including γδ T cells and Th17 cells. However, the origin of these T cells and their relevance for fracture repair are unknown. Here, we show that fractures rapidly expanded callus γδ T cells, which led to increased gut permeability by promoting systemic inflammation. When the microbiota contained the Th17 cell-inducing taxon segmented filamentous bacteria (SFB), activation of γδ T cells was followed by expansion of intestinal Th17 cells, their migration to the callus, and improved fracture repair. Mechanistically, fractures increased the S1P receptor 1-mediated (S1PR1-mediated) egress of Th17 cells from the intestine and enhanced their homing to the callus through a CCL20-mediated mechanism. Fracture repair was impaired by deletion of γδ T cells, depletion of the microbiome by antibiotics (Abx), blockade of Th17 cell egress from the gut, or Ab neutralization of Th17 cell influx into the callus. These findings demonstrate the relevance of the microbiome and T cell trafficking for fracture repair. Modifications of microbiome composition via Th17 cell-inducing bacteriotherapy and avoidance of broad-spectrum Abx may represent novel therapeutic strategies to optimize fracture healing.


Assuntos
Microbiota , Células Th17 , Camundongos , Animais , Consolidação da Fratura , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T gama-delta/genética
4.
PLoS One ; 17(8): e0272608, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35921353

RESUMO

PURPOSE: We describe the rationale for and design of an innovative, nested, tripartite prospective observational cohort study examining whether relative estrogen insufficiency-induced inflammation amplifies HIV-induced inflammation to cause end organ damage and worsen age-related co-morbidities affecting the neuro-hypothalamic-pituitary-adrenal axis (Brain), skeletal (Bone), and cardiovascular (Heart/vessels) organ systems (BBH Study). METHODS: The BBH parent study is the Multicenter AIDS Cohort/Women's Interagency HIV Study Combined Cohort Study (MWCCS) with participants drawn from the Atlanta MWCCS site. BBH will enroll a single cohort of n = 120 women living with HIV and n = 60 HIV-negative women, equally distributed by menopausal status. The innovative multipart nested study design of BBH, which draws on data collected by the parent study, efficiently leverages resources for maximum research impact and requires extensive oversight and management in addition to careful implementation. The presence of strong infrastructure minimized BBH study disruptions due to changes in the parent study and the COVID-19 pandemic. CONCLUSION: BBH is poised to provide insight into sex and HIV associations with the neuro-hypothalamic-pituitary-adrenal axis, skeletal, and cardiovascular systems despite several major, unexpected challenges.


Assuntos
COVID-19 , Infecções por HIV , Estudos de Coortes , Estrogênios , Feminino , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , Humanos , Sistema Hipotálamo-Hipofisário , Inflamação/complicações , Estudos Multicêntricos como Assunto , Estudos Observacionais como Assunto , Pandemias , Sistema Hipófise-Suprarrenal , Estudos Prospectivos
5.
JBMR Plus ; 6(7): e10636, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35866149

RESUMO

Cyclic adenosine monophosphate (cAMP)-dependent phosphodiesterase (PDE) inhibitors such as pentoxifylline (PTX) suppress cAMP degradation and promote cAMP-dependent signal transduction. PDE inhibitors increase bone formation and bone mass in preclinical models and are used clinically to treat psoriatic arthritis by targeting inflammatory mediators including activated T cells. T cell activation requires two signals: antigen-dependent CD3-activation, which stimulates cAMP production; and CD28 co-stimulation, which downregulates cAMP-signaling, through PDE activation. PDE-inhibitors consequently suppress T cell activation by disrupting CD28 co-stimulation. Interestingly, we have reported that when CD8+ T cells are activated in the absence of CD28 co-stimulation, they secrete Wnt-10b, a bone anabolic Wnt ligand that promotes bone formation. In the present study, we investigated whether the bone anabolic activity of the PDE-inhibitor PTX, has an immunocentric basis, involving Wnt-10b production by CD8+ T cells. When wild-type (WT) mice were administered PTX, biochemical markers of both bone resorption and formation were significantly increased, with net bone gain in the axial skeleton, as quantified by micro-computed tomography (µCT). By contrast, PTX increased only bone resorption in T cell knockout (KO) mice, causing net bone loss. Reconstituting T cell-deficient mice with WT, but not Wnt-10b knockout (KO) CD8+ T cells, rescued bone formation and prevented bone loss. To study the role of cAMP signaling in Wnt-10b expression, reverse-transcription polymerase chain reaction (RT-PCR) and luciferase-reporter assays were performed using primary T cells. PDE inhibitors intensified Wnt-10b promoter activity and messenger RNA (mRNA) accumulation in CD3 and CD28 activated CD8+ T cells. In contrast, inhibiting the cAMP pathway mediators protein kinase A (PKA) and cAMP response element-binding protein (CREB), suppressed Wnt-10b expression by T cells activated in the absence of CD28 co-stimulation. In conclusion, the data demonstrate a key role for Wnt-10b production by CD8+ T cells in the bone anabolic response to PDE-inhibitors and reveal competing T cell-independent pro-resorptive properties of PTX, which dominate under T cell-deficient conditions. Selective targeting of CD8+ T cells by PDE inhibitors may be a beneficial approach for promoting bone regeneration in osteoporotic conditions. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

6.
AIDS ; 36(12): 1683-1688, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35730385

RESUMO

BACKGROUND: Fracture rates have been reported to be higher among older women living with HIV (WLWH) than HIV- women. Hormone therapy with estrogen can reduce vasomotor symptoms (VMS) associated with menopause and prevent fractures. As data are limited on the benefits of hormone therapy use in WLWH, we examined associations of hormone therapy, use and fractures. METHODS: A prospective study of 1765 (1350 WLWH and 415 HIV-) postmenopausal Women's Interagency HIV Study (WIHS) participants was performed, including self-reported hormone therapy, use and fracture data from 2003 to 2017. Proportional hazard models determined predictors of new fractures at any site or at typical fragility fracture sites (hip, spine, wrist). RESULTS: At the first postmenopausal visit, the median (IQR) age of WLWH was slightly younger than HIV- women [49.8 (46.4-53) vs. 50.7 (47.5-54), P  = 0.0002] and a smaller proportion of WLWH reported presence of VMS (17% vs. 26%, P  < 0.0001). A greater proportion of WLWH than HIV- women reported hormone therapy use (8% vs. 4%, P  = 0.007) at the first postmenopausal visit. In multivariate analyses, white race and smoking were significant predictors of incident fracture at any site but hormone therapy ( P  = 0.69) and HIV status ( P  = 0.53) were not. CONCLUSION: Our study did not find evidence of benefit or harm with regards to fracture outcomes in postmenopausal WLWH receiving hormone therapy. Further research is needed to determine whether hormone therapy has benefits beyond treatment of VMS, such as prevention of adverse aging-associated outcomes.


Assuntos
Fraturas Ósseas , Infecções por HIV , Idoso , Feminino , Fraturas Ósseas/epidemiologia , Fraturas Ósseas/prevenção & controle , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Hormônios , Humanos , Pós-Menopausa , Estudos Prospectivos , Fatores de Risco
7.
J Clin Invest ; 132(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35503658

RESUMO

Bone metastases are frequent complications of malignant melanoma leading to reduced quality of life and significant morbidity. Regulation of immune cells by the gut microbiome influences cancer progression, but the role of the microbiome in tumor growth in bone is unknown. Using intracardiac or intratibial injections of B16-F10 melanoma cells into mice, we showed that gut microbiome depletion by broad-spectrum antibiotics accelerated intraosseous tumor growth and osteolysis. Microbiome depletion blunted melanoma-induced expansion of intestinal NK cells and Th1 cells and their migration from the gut to tumor-bearing bones. Demonstrating the functional relevance of immune cell trafficking from the gut to the bone marrow (BM) in bone metastasis, blockade of S1P-mediated intestinal egress of NK and Th1 cells, or inhibition of their CXCR3/CXCL9-mediated influx into the BM, prevented the expansion of BM NK and Th1 cells and accelerated tumor growth and osteolysis. Using a mouse model, this study revealed mechanisms of microbiota-mediated gut-bone crosstalk that are relevant to the immunological restraint of melanoma metastasis and tumor growth in bone. Microbiome modifications induced by antibiotics might have negative clinical consequences in patients with melanoma.


Assuntos
Microbioma Gastrointestinal , Melanoma Experimental , Osteólise , Animais , Antibacterianos/farmacologia , Desenvolvimento Ósseo , Humanos , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Qualidade de Vida , Células Th1/patologia
8.
Immun Ageing ; 19(1): 4, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980186

RESUMO

Older age could be a risk factor for suboptimal CD4+ T-cell recovery in HIV-infected patients despite successful viral suppression. However, evaluation of this effect could be confounded by age-related immune processes such as decreased thymus output, increased immune activation and exhaustion. Here, we established a semi-mechanistic population model simultaneously describing naïve and memory CD4+ T-cell trajectories in 122 participants. Covariate analysis accounting for immune activation showed that older age was significantly associated with faster apparent elimination rate of the naïve T-cells. In addition, female sex predicted slower apparent elimination rate of memory T-cells. Simulations showed that the median maximal CD4+ T-cell count on ART treatment was 593 cells/µL (IQR 442-794) in patients aged 50 years or above and 738 cells/µL (IQR 548-1002) in patients aged 18-35 years. The differences in the percentage of subjects achieving sufficient immune reconstitution (CD4+ T-cell count> 500 cells/µL) between the two age groups were 15, 21 and 26% at year 1, 4 years and steady state, respectively, suggesting that advanced age may have a greater impact on long-term CD4+ T-cell recovery.

9.
J Infect Dis ; 226(1): 38-48, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962571

RESUMO

BACKGROUND: Immune reconstitution bone loss (IRBL) is a common side-effect of antiretroviral therapy (ART) in people with human immunodeficiency virus (PWH). Immune reconstitution bone loss acts through CD4+ T-cell/immune reconstitution-induced inflammation and is independent of antiviral regimen. Immune reconstitution bone loss may contribute to the high rate of bone fracture in PWH, a cause of significant morbidity and mortality. Although IRBL is transient, it remains unclear whether bone recovers, or whether it is permanently denuded and further compounds bone loss associated with natural aging. METHODS: We used a validated IRBL mouse model involving T-cell reconstitution of immunocompromised mice. Mice underwent cross-sectional bone phenotyping of femur and/or vertebrae between 6 and 20 months of age by microcomputed tomography (µCT) and quantitative bone histomorphometry. CD4+ T cells were purified at 20 months to quantify osteoclastogenic/inflammatory cytokine expression. RESULTS: Although cortical IRBL in young animals recovered with time, trabecular bone loss was permanent and exacerbated skeletal decline associated with natural aging. At 20 months of age, reconstituted CD4+ T cells express enhanced osteoclastogenic cytokines including RANKL, interleukin (IL)-1ß, IL-17A, and tumor necrosis factor-α, consistent with elevated osteoclast numbers. CONCLUSIONS: Immune reconstitution bone loss in the trabecular compartment is permanent and further exacerbates bone loss due to natural aging. If validated in humans, interventions to limit IRBL may be important to prevent fractures in aging PWH.


Assuntos
Infecções por HIV , Reconstituição Imune , Envelhecimento , Animais , Linfócitos T CD4-Positivos , Citocinas/metabolismo , Infecções por HIV/complicações , Humanos , Camundongos , Microtomografia por Raio-X
10.
Blood Adv ; 5(23): 4922-4934, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34496009

RESUMO

Patients with sickle cell disease (SCD) have a lower risk for HIV-1 infection. We reported restriction of ex vivo HIV-1 infection in SCD peripheral blood mononuclear cells (PBMCs) that was due, in part, to the upregulation of antiviral, inflammatory, and hemolytic factors, including heme oxygenase-1 (HO-1). Here, we investigated whether individuals with sickle cell trait (SCT), who develop mild hemolysis, also restrict HIV-1 infection. Ex vivo infection of SCT PBMCs exhibited an approximately twofold reduction of HIV-1 replication and lower levels of HIV-1 reverse transcription products, 2-long terminal repeat circle, HIV-1 integration, and gag RNA expression. SCT PBMCs had higher HO-1 messenger RNA (mRNA) and protein levels and reduced ribonucleotide reductase 2 (RNR2) protein levels. HO-1 inhibition by tin porphyrin eliminated ex vivo HIV-1 restriction. Among Howard University clinic recruits, higher levels of HO-1 and RNR2 mRNA and lower HIV-1 env mRNA levels were found in SCT individuals living with HIV-1. To determine the population-level effect of SCT on HIV-1 prevalence, we assessed SCT among women living with HIV (WLH) in the WIHS (Women Interagency HIV-1 Study). Among WIHS African-American participants, the prevalence of SCT was lower among women with HIV compared with uninfected women (8.7% vs 14.2%; odds ratio, 0.57; 95% confidence interval, 0.36-0.92; P = .020). WIHS WLH with SCT had higher levels of CD4+/CD8+ ratios over 20 years of follow-up (P = .003) than matched WLH without SCT. Together, our findings suggest that HIV-1 restriction factors, including HO-1 and RNR2, might restrict HIV-1 infection among individuals with SCT and limit the pathogenicity of HIV.


Assuntos
Anemia Falciforme , Infecções por HIV , HIV-1 , Traço Falciforme , Anemia Falciforme/epidemiologia , Feminino , Infecções por HIV/epidemiologia , Humanos , Leucócitos Mononucleares , Traço Falciforme/genética
11.
J Clin Invest ; 131(4)2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33586672

RESUMO

Estrogen deficiency causes a gut microbiome-dependent expansion of BM Th17 cells and TNF-α-producing T cells. The resulting increased BM levels of IL-17a (IL-17) and TNF stimulate RANKL expression and activity, causing bone loss. However, the origin of BM Th17 cells and TNF+ T cells is unknown. Here, we show that ovariectomy (ovx) expanded intestinal Th17 cells and TNF+ T cells, increased their S1P receptor 1-mediated (S1PR1-mediated) egress from the intestine, and enhanced their subsequent influx into the BM through CXCR3- and CCL20-mediated mechanisms. Demonstrating the functional relevance of T cell trafficking, blockade of Th17 cell and TNF+ T cell egress from the gut or their influx into the BM prevented ovx-induced bone loss. Therefore, intestinal T cells are a proximal target of sex steroid deficiency relevant for bone loss. Blockade of intestinal T cell migration may represent a therapeutic strategy for the treatment of postmenopausal bone loss.


Assuntos
Movimento Celular/imunologia , Intestinos , Osteoporose Pós-Menopausa , Ovariectomia , Células Th17/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Quimiocina CCL20/genética , Quimiocina CCL20/imunologia , Feminino , Humanos , Intestinos/imunologia , Intestinos/microbiologia , Camundongos , Camundongos Knockout , Osteoporose Pós-Menopausa/imunologia , Osteoporose Pós-Menopausa/microbiologia , Receptores CXCR3/genética , Receptores CXCR3/imunologia , Fator de Necrose Tumoral alfa/genética
12.
Clin Nutr ; 40(2): 467-475, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32620447

RESUMO

BACKGROUND & AIMS: There is a considerable degree of variation in bone mineral density (BMD) within populations. Use of plasma metabolomics may provide insight into established and novel determinants of BMD variance, such as nutrition and gut microbiome composition, to inform future prevention and treatment strategies for loss of BMD. Using high-resolution metabolomics (HRM), we examined low-molecular weight plasma metabolites and nutrition-related metabolic pathways associated with BMD. METHODS: This cross-sectional study included 179 adults (mean age 49.5 ± 10.3 yr, 64% female). Fasting plasma was analyzed using ultra-high-resolution mass spectrometry with liquid chromatography. Whole body and spine BMD were assessed by dual energy X-ray absorptiometry and expressed as BMD (g/cm2) or Z-scores. Multiple linear regression, pathway enrichment, and module analyses were used to determine key plasma metabolic features associated with bone density. RESULTS: Of 10,210 total detected metabolic features, whole body BMD Z-score was associated with 710 metabolites, which were significantly enriched in seven metabolic pathways, including linoleic acid, fatty acid activation and biosynthesis, and glycerophospholipid metabolism. Spine BMD was associated with 970 metabolites, significantly enriched in pro-inflammatory pathways involved in prostaglandin formation and linoleic acid metabolism. In module analyses, tryptophan- and polyamine-derived metabolites formed a network that was significantly associated with spine BMD, supporting a link with the gut microbiome. CONCLUSIONS: Plasma HRM provides comprehensive information relevant to nutrition and components of the microbiome that influence bone health. This data supports pro-inflammatory fatty acids and the gut microbiome as novel regulators of postnatal bone remodeling.


Assuntos
Densidade Óssea , Cromatografia Líquida/métodos , Ácido Linoleico/sangue , Espectrometria de Massas/métodos , Metabolômica/métodos , Absorciometria de Fóton , Adulto , Biomarcadores/análise , Estudos Transversais , Feminino , Humanos , Modelos Lineares , Vértebras Lombares/diagnóstico por imagem , Masculino , Redes e Vias Metabólicas , Pessoa de Meia-Idade , Prostaglandinas/sangue , Medição de Risco
13.
Nutrients ; 12(10)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081124

RESUMO

Bone is a dynamic tissue that is in a constant state of remodeling. Bone turnover markers (BTMs), procollagen type I N-terminal propeptide (P1NP) and C-terminal telopeptides of type I collagen (CTX), provide sensitive measures of bone formation and resorption, respectively. This study used ultra-high-resolution metabolomics (HRM) to determine plasma metabolic pathways and targeted metabolites related to the markers of bone resorption and formation in adults. This cross-sectional clinical study included 34 adults (19 females, mean 27.8 years), without reported illnesses, recruited from a US metropolitan area. Serum BTM levels were quantified by an ELISA. Plasma HRM utilized dual-column liquid chromatography and mass spectrometry to identify metabolites and metabolic pathways associated with BTMs. Metabolites significantly associated with P1NP (p < 0.05) were significantly enriched in pathways linked to the TCA cycle, pyruvate metabolism, and metabolism of B vitamins important for energy production (e.g., niacin, thiamin). Other nutrition-related metabolic pathways associated with P1NP were amino acid (proline, arginine, glutamate) and vitamin C metabolism, which are important for collagen formation. Metabolites associated with CTX levels (p < 0.05) were enriched within lipid and fatty acid beta-oxidation metabolic pathways, as well as fat-soluble micronutrient pathways including, vitamin D metabolism, vitamin E metabolism, and bile acid biosynthesis. P1NP and CTX were significantly related to microbiome-related metabolites (p < 0.05). Macronutrient-related pathways including lipid, carbohydrate, and amino acid metabolism, as well as several gut microbiome-derived metabolites were significantly related to BTMs. Future research should compare metabolism BTMs relationships reported here to aging and clinical populations to inform targeted therapeutic interventions.


Assuntos
Remodelação Óssea/fisiologia , Colágeno Tipo I/sangue , Metaboloma , Fenômenos Fisiológicos da Nutrição/fisiologia , Osteogênese/fisiologia , Fragmentos de Peptídeos/sangue , Peptídeos/sangue , Pró-Colágeno/sangue , Adulto , Ácidos e Sais Biliares/metabolismo , Biomarcadores/sangue , Feminino , Microbioma Gastrointestinal/fisiologia , Humanos , Masculino , Micronutrientes/metabolismo , Osteoblastos , Osteoclastos , Vitaminas/metabolismo
14.
AIDS ; 34(10): 1475-1483, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32675561

RESUMO

BACKGROUND: Antiretroviral therapy (ART) has led to a significant decline in HIV-related morbidity and mortality in people living with HIV (PLWH). PLWH however experience non-AIDS ageing-associated comorbidities, including decreased bone mass and osteoporosis, earlier and more severely, than uninfected people. We previously reported that total B-cell production of the key osteoclastogenic cytokine receptor activator of NF-κB ligand (RANKL) was elevated in PLWH, concurrent with a decrease in total B-cell production of RANKL's physiological moderator Osteoprotegerin (OPG). The resulting increased total B-cell RANKL/OPG ratio was significantly associated with bone loss in the appendicular (long bones), but not axial (spine) skeletons of PLWH. A role for immature/transitional B cells (BImm) in HIV-induced bone loss has not been reported. METHODS: BImm frequency was determined by flow cytometry; plasma IL-7 was quantified by ELISA and bone mineral density (BMD) measured by dual X-ray absorptiometry (DXA) in a cross-sectional study of 62 ART-naive HIV-infected and 58 HIV-negative individuals. RESULTS: BImm expansion correlated with the total B-cell RANKL/OPG ratio in HIV-infected individuals and inversely with BMD at the total hip, femoral neck and the lumbar spine, and with IL-7. CONCLUSION: These data suggest that BImm contribute to the increased B-cell RANKL/OPG ratio in PLWH, and reveal a previously unrecognized link between BImm expansion and HIV-induced bone loss in the axial and appendicular skeletons of severely immunocompromised HIV-infected individuals. BImm expansion may be a novel biomarker for screening patients at risk of osteoporosis.


Assuntos
Densidade Óssea , Reabsorção Óssea/patologia , Linfócitos T CD4-Positivos/citologia , Infecções por HIV , Linfopenia , Células Precursoras de Linfócitos B/imunologia , Adulto , Estudos Transversais , Feminino , Infecções por HIV/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo
15.
Nat Commun ; 11(1): 468, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980603

RESUMO

Bone loss is a frequent but not universal complication of hyperparathyroidism. Using antibiotic-treated or germ-free mice, we show that parathyroid hormone (PTH) only caused bone loss in mice whose microbiota was enriched by the Th17 cell-inducing taxa segmented filamentous bacteria (SFB). SFB+ microbiota enabled PTH to expand intestinal TNF+ T and Th17 cells and increase their S1P-receptor-1 mediated egress from the intestine and recruitment to the bone marrow (BM) that causes bone loss. CXCR3-mediated TNF+ T cell homing to the BM upregulated the Th17 chemoattractant CCL20, which recruited Th17 cells to the BM. This study reveals mechanisms for microbiota-mediated gut-bone crosstalk in mice models of hyperparathyroidism that may help predict its clinical course. Targeting the gut microbiota or T cell migration may represent therapeutic strategies for hyperparathyroidism.


Assuntos
Microbioma Gastrointestinal/imunologia , Osteoporose/etiologia , Hormônio Paratireóideo/imunologia , Subpopulações de Linfócitos T/imunologia , Células Th17/imunologia , Animais , Transplante de Microbiota Fecal , Feminino , Vida Livre de Germes , Bacilos Gram-Positivos Formadores de Endosporo/imunologia , Hiperparatireoidismo Primário/complicações , Hiperparatireoidismo Primário/imunologia , Hiperparatireoidismo Primário/microbiologia , Intestinos/imunologia , Intestinos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoporose/imunologia , Osteoporose/microbiologia , Fator de Necrose Tumoral alfa/imunologia
16.
J Clin Invest ; 130(4): 1767-1781, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31917685

RESUMO

Parathyroid hormone (PTH) is a critical regulator of skeletal development that promotes both bone formation and bone resorption. Using microbiota depletion by wide-spectrum antibiotics and germ-free (GF) female mice, we showed that the microbiota was required for PTH to stimulate bone formation and increase bone mass. Microbiota depletion lowered butyrate levels, a metabolite responsible for gut-bone communication, while reestablishment of physiologic levels of butyrate restored PTH-induced anabolism. The permissive activity of butyrate was mediated by GPR43 signaling in dendritic cells and by GPR43-independent signaling in T cells. Butyrate was required for PTH to increase the number of bone marrow (BM) regulatory T cells (Tregs). Tregs stimulated production of the osteogenic Wnt ligand Wnt10b by BM CD8+ T cells, which activated Wnt-dependent bone formation. Together, these data highlight the role that butyrate produced by gut luminal microbiota plays in triggering regulatory pathways, which are critical for the anabolic action of PTH in bone.


Assuntos
Butiratos/metabolismo , Microbioma Gastrointestinal , Osteogênese , Hormônio Paratireóideo/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Camundongos , Camundongos Knockout , Hormônio Paratireóideo/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Linfócitos T Reguladores/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
17.
Clin Infect Dis ; 71(7): 1655-1663, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31621838

RESUMO

BACKGROUND: Human immunodeficiency virus (HIV) infection and antiretroviral therapy (ART) are associated with bone loss leading to increased fracture rate among persons with HIV (PWH). We previously showed long-acting antiresorptive zoledronic acid (ZOL) prevented ART-induced bone loss through 48 weeks of therapy and here investigate whether protection persisted. METHODS: We randomized 63 nonosteoporotic, treatment-naive adult PWH initiating ART to ZOL (5 mg) versus placebo in a double-blinded, placebo-controlled, phase IIb trial. Here we analyzed the long-term outcome data (144 weeks). Plasma bone turnover markers and bone mineral density (BMD) were quantified at weeks 0, 12, 24, 48, 96, and 144. Primary outcome was change in bone resorption marker C-terminal telopeptide of collagen (CTx). Repeated-measures analyses using mixed linear models were used to estimate and compare study endpoints. RESULTS: At 96 weeks, mean CTx was 62% lower with ZOL relative to placebo (n = 46; CTx = 0.123 vs 0.324 ng/mL; P < .001); at 144 weeks a 25% difference between arms was not statistically significant. At 48 weeks, lumbar spine BMD with ZOL was 11% higher than placebo (n = 60; P < .001) and remained 9-11% higher at 96 (n = 46) and 144 (n = 41; P < .001) weeks. 144 weeks after ZOL infusion, BMD did not change at the lumbar spine (P = .22) but declined at the hip (P = .04) and femoral neck (P = .02). CONCLUSIONS: A single dose of ZOL administered at ART initiation blunts bone resorption and BMD loss at key fracture-prone anatomical sites in treatment-naive PWH for 3 years. A multicenter randomized phase III clinical trial validating these results in a larger population is needed. CLINICAL TRIALS REGISTRATION: NCT01228318.


Assuntos
Conservadores da Densidade Óssea , Infecções por HIV , Adulto , Densidade Óssea , Conservadores da Densidade Óssea/uso terapêutico , Difosfonatos/uso terapêutico , Método Duplo-Cego , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Humanos , Imidazóis/efeitos adversos , Ácido Zoledrônico/uso terapêutico
18.
Blood Adv ; 3(3): 288-300, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30700417

RESUMO

Hemophilia A (HA), a rare X-linked recessive genetic disorder caused by insufficient blood clotting factor VIII, leaves affected individuals susceptible to spontaneous and traumatic hemorrhage. Although males generally exhibit severe symptoms, due to variable X inactivation, females can also be severely impacted. Osteoporosis is a disease of the skeleton predisposing patients to fragility fracture, a cause of significant morbidity and mortality and a common comorbidity in HA. Because the causes of osteoporosis in HA are unclear and in humans confounded by other traditional risk factors for bone loss, in this study, we phenotyped the skeletons of F8 total knockout (F8 TKO) mice, an animal model of severe HA. We found that trabecular bone accretion in the axial and appendicular skeletons of male F8 TKO mice lagged significantly between 2 and 6 months of age, with more modest cortical bone decline. By contrast, in female mice, diminished bone accretion was mostly limited to the cortical compartment. Interestingly, bone loss was associated with a decline in bone formation in male mice but increased bone resorption in female mice, a possible result of sex steroid insufficiency. In conclusion, our studies reveal a sexual dimorphism in the mechanism driving bone loss in male and female F8 TKO mice, preventing attainment of peak bone mass and strength. If validated in humans, therapies aimed at promoting bone formation in males but suppressing bone resorption in females may be indicated to facilitate attainment of peak mass in children with HA to reduce the risk for fracture later in life.


Assuntos
Doenças Ósseas Metabólicas/genética , Reabsorção Óssea/genética , Hemofilia A/genética , Osteogênese/genética , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos
19.
J Bone Miner Res ; 34(2): 349-360, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30399207

RESUMO

Primary hyperparathyroidism (PHPT) is a condition where elevated PTH levels lead to bone loss, in part through increased production of the osteoclastogenic factor IL-17A, by bone marrow (BM) T-helper 17 (Th17) cells, a subset of helper CD4+ T cells. In animals, PHPT is modeled by continuous PTH treatment (cPTH). In mice, an additional critical action of cPTH is the capacity to increase the production of RANKL by osteocytes. However, a definitive link between IL-17A and osteocytic expression of RANKL has not been made. Here we show that cPTH fails to induce cortical and trabecular bone loss and causes less intense bone resorption in conditional knock-out (IL-17RAΔOCY ) male and female mice lacking the expression of IL-17A receptor (IL-17RA) in dentin matrix protein 1 (DMP1)-8kb-Cre-expressing cells, which include osteocytes and some osteoblasts. Therefore, direct IL-17RA signaling in osteoblasts/osteocytes is required for cPTH to exert its bone catabolic effects. In addition, in vivo, silencing of IL-17RA signaling in in DMP1-8kb-expressing cells blunts the capacity of cPTH to stimulate osteocytic RANKL production, indicating that cPTH augments osteocytic RANKL expression indirectly, via an IL-17A/IL-17RA-mediated mechanism. Thus, osteocytic production of RANKL and T cell production of IL-17A are both critical for the bone catabolic activity of cPTH. © 2018 American Society for Bone and Mineral Research.


Assuntos
Reabsorção Óssea/metabolismo , Osteócitos/metabolismo , Hormônio Paratireóideo/metabolismo , Ligante RANK/biossíntese , Receptores de Interleucina-17/metabolismo , Transdução de Sinais , Animais , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Hiperparatireoidismo Primário/genética , Hiperparatireoidismo Primário/metabolismo , Hiperparatireoidismo Primário/patologia , Interleucina-17/genética , Interleucina-17/metabolismo , Camundongos , Camundongos Knockout , Osteócitos/patologia , Hormônio Paratireóideo/genética , Ligante RANK/genética , Receptores de Interleucina-17/genética
20.
Immunity ; 49(6): 1116-1131.e7, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30446387

RESUMO

Nutritional supplementation with probiotics can prevent pathologic bone loss. Here we examined the impact of supplementation with Lactobacillus rhamnosus GG (LGG) on bone homeostasis in eugonadic young mice. Micro-computed tomography revealed that LGG increased trabecular bone volume in mice, which was due to increased bone formation. Butyrate produced in the gut following LGG ingestion, or butyrate fed directly to germ-free mice, induced the expansion of intestinal and bone marrow (BM) regulatory T (Treg) cells. Interaction of BM CD8+ T cells with Treg cells resulted in increased secretion of Wnt10b, a bone anabolic Wnt ligand. Mechanistically, Treg cells promoted the assembly of a NFAT1-SMAD3 transcription complex in CD8+ cells, which drove expression of Wnt10b. Reducing Treg cell numbers, or reconstitution of TCRß-/- mice with CD8+ T cells from Wnt10b-/- mice, prevented butyrate-induced bone formation and bone mass acquisition. Thus, butyrate concentrations regulate bone anabolism via Treg cell-mediated regulation of CD8+ T cell Wnt10b production.


Assuntos
Butiratos/farmacologia , Osteogênese/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Proteínas Wnt/metabolismo , Animais , Butiratos/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Comunicação Celular , Proliferação de Células/efeitos dos fármacos , Feminino , Lacticaseibacillus rhamnosus/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Probióticos/administração & dosagem , Probióticos/metabolismo , Linfócitos T Reguladores/citologia , Proteínas Wnt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...